Pengertian Rubidium

Semoga dapat membantu walau kurangnya jawaban pengertian lengkap untuk menyatakan artinya. Pada postingan di atas pengertian dari kata “rubidium” berasal dari beberapa sumber, bahasa, dan website di internet yang dapat anda lihat di bagian menu sumber. Untuk memahami lebih lanjut anda dapat membeli buku glosarium di toko buku terdekat. Rubidium n kim logam alkali berwarna putih, bersifat lunak mirip kalium; Unsur dng nomor atom 37, lambang rb, dan bobot atom 85,4678 demikian penjelasan singkat dari arti kata rubidium berdasarkan kamus besar bahasa indonesia dan. Rubidium terkonsentrasi di dalam sel di dalam cairan intraseluler.

Ion rubidium tidak terlalu beracun, tetapi tikus mati jika lebih dari setengah kalium di otot jantung digantikan oleh rubidium. Rubidium klorida telah diuji sebagai terapi untuk pengobatan depresi. Homepage / pengertian rubidium. Penjelasan, sejarah dan kegunaan. By admin posted on november 18, 2017 november 19, 2017. Penjelasan, sejarah dan kegunaan sejarah rubidium (latin, rubidus, merah menyala). Ditemukan oleh bunsen dan kirchoff pada tahun […] Rubidium menjadi cair pada 39,3 oc (102,7 of) sedikit lebih tinggi dari suhu tubuh kita. Rubidium tidak diketahui beracun. Rubidium adalah unsur logam berwarna putih keperakan.

Baca Juga :

Video Tentang Pengertian Rubidium

Kami berusaha menampilkan informasi mengenai Pengertian Rubidium secara lengkap, dari berbagai sumber di internet. Pembahasan artikel di atas Kami sampaikan inti-intinya saja, bisa dikatakan sebagai kesimpulannya. Untuk melengkapinya, berikut ini ada beberapa video yang menjelaskan secara lengkap seputar Pengertian Rubidium. Silakan disimak.

  • What is RUBIDIUM What does RUBIDIUM mean RUBIDIUM meaning, definition & explanation

    ( Read More)

    ✪✪✪✪✪ theaudiopedia.com ✪✪✪✪✪

    What is RUBIDIUM? What does RUBIDIUM mean? RUBIDIUM meaning - RUBIDIUM pronunciation - RUBIDIUM definition - RUBIDIUM explanation - How to pronounce RUBIDIUM?

    Source: Wikipedia.org article, adapted under creativecommons.org/licenses/by-sa/3.0/ license

    Rubidium is a chemical element with symbol Rb and atomic number 37. Rubidium is a soft, silvery-white metallic element of the alkali metal group, with an atomic mass of 85.4678. Elemental rubidium is highly reactive, with properties similar to those of other alkali metals, including rapid oxidation in air. On Earth, natural rubidium comprises two isotopes: 72% is the stable isotope, 85Rb; 28% is the slightly radioactive 87Rb, with a half-life of 49 billion years—more than three times longer than the estimated age of the universe.

    German chemists Robert Bunsen and Gustav Kirchhoff discovered rubidium in 1861 by the newly developed technique, flame spectroscopy.

    Rubidium's compounds have various chemical and electronic applications. Rubidium metal is easily vaporized and has a convenient spectral absorption range, making it a frequent target for laser manipulation of atoms.

    Rubidium is not a known nutrient for any living organisms. However, rubidium ions have the same charge as potassium ions, and are actively taken up and treated by animal cells in similar ways.

    Rubidium is a very soft, ductile, silvery-white metal. It is the second most electropositive of the non-radioactive alkali metals and melts at a temperature of 39.3 °C (102.7 °F). Similar to other alkali metals, rubidium metal reacts violently with water. As with potassium (which is slightly less reactive) and caesium (which is slightly more reactive), this reaction is usually vigorous enough to ignite the hydrogen gas it produces. Rubidium has also been reported to ignite spontaneously in air. It forms amalgams with mercury and alloys with gold, iron, caesium, sodium, and potassium, but not lithium (even though rubidium and lithium are in the same group).

    Rubidium has a very low ionization energy of only 406 kJ/mol. Rubidium and potassium show a very similar purple color in the flame test, and distinguishing the two elements requires something more sophisticated, such as spectroscopy.

    Rubidium is the twenty-third most abundant element in the Earth's crust, roughly as abundant as zinc and rather more common than copper. It occurs naturally in the minerals leucite, pollucite, carnallite, and zinnwaldite, which contain as much as 1% rubidium oxide. Lepidolite contains between 0.3% and 3.5% rubidium, and is the commercial source of the element. Some potassium minerals and potassium chlorides also contain the element in commercially significant quantities.

    Seawater contains an average of 125 µg/L of rubidium compared to the much higher value for potassium of 408 mg/L and the much lower value of 0.3 µg/L for caesium.

    Because of its large ionic radius, rubidium is one of the "incompatible elements." During magma crystallization, rubidium is concentrated together with its heavier analogue caesium in the liquid phase and crystallizes last. Therefore, the largest deposits of rubidium and caesium are zone pegmatite ore bodies formed by this enrichment process. Because rubidium substitutes for potassium in the crystallization of magma, the enrichment is far less effective than that of caesium. Zone pegmatite ore bodies containing mineable quantities of caesium as pollucite or the lithium minerals lepidolite are also a source for rubidium as a by-product.

    Two notable sources of rubidium are the rich deposits of pollucite at Bernic Lake, Manitoba, Canada, and the rubicline ((Rb,K)AlSi3O8) found as impurities in pollucite on the Italian island of Elba, with a rubidium content of 17.5%. Both of those deposits are also sources of caesium.

    Although rubidium is more abundant in Earth's crust than caesium, the limited applications and the lack of a mineral rich in rubidium limits the production of rubidium compounds to 2 to 4 tonnes per year. Several methods are available for separating potassium, rubidium, and caesium. The fractional crystallization of a rubidium and caesium alum (Cs,Rb)Al(SO4)2·12H2O yields after 30 subsequent steps pure rubidium alum. Two other methods are reported, the chlorostannate process and the ferrocyanide process.

    For several years in the 1950s and 1960s, a by-product of potassium production called Alkarb was a main source for rubidium. Alkarb contained 21% rubidium, with the rest being potassium and a small amount of caesium. Today the largest producers of caesium, such as the Tanco Mine, Manitoba, Canada, produce rubidium as a by-product from pollucite.

  • What does rubidium metal look like

    ( Read More)

    A look at this very rare element rubidium.

    This little-known element is ferociously reactive, very rare, and has next to no marketable uses. Those three strikes make this little more than a scientific curiosity. And in the scientific world curiosities don't come cheap. Rubidium is consistently one of the priciest and most difficult to acquire pure elements.

    It is actually only rare in the sense that it is concentrated in a few commercially valuable minerals. It comes in two isotopic 'flavors': the atom with 85 neutrons and another with 87. The lighter isotope is more common by a factor of two or three depending on the source but the heavier, Rb87, is weakly radioactive. Like atomic-sized popcorn, those rubidium atoms are popping at a constant rate of 100,000 per hour leaving behind newly formed strontium. This stream of new strontium is significant enough that it accounts for some 7% of the strontium metal present in the universe.

    But really, that's little cause for concern. There are some 150 sextillion atoms of rubidium in one of these ampules. That's a 15 followed by twenty-two zeroes. We therefore unconditionally guarantee that for the remainder of your lifetime the sample sold will be contaminated by only a minuscule, truly trivial amount of strontium ;-)

    Rubidium needs to be stored in an argon sealed ampule to keep its luster and similar to the other alkaline metals rubidium should not touch water as it reacts violently.

    Buy your rubidium metal from Luciteria Science:
    luciteria.com/elements-for-sale/rubidium-metal-9999

    Follow us on Facebook to find out about new product offerings and element news

    facebook.com/luciteria/

  • Apa Unsur Terlangka di Bumi

    ( Read More)

    Kita telah menjelajahi sebagian lautan, daratan, dan juga tata surya. Tapi, pernahkah kamu bertanya-tanya, terbuat dari apa benda-benda di sekeliling kita? Mungkin kamu akan terkejut mengetahui ini: bumi menyimpan unsur-unsur yang paling melimpah di jagat raya ini, dalam jumlah terbatas.

    Kita tidak tahu pasti apa yang terjadi di bawah kerak bumi. Namun, bukan berarti, kita tidak mencari tahunya. Pada 1970, penggalian lubang dilakukan hingga mencapai bagian bawah kerak bumi. Lubang ini hanya berdiameter 23 cm, dan merupakan lubang terdalam di dunia, atau lubang vertikal terdalam.

    PENANDA WAKTU:

    Oksigen 1:46

    Aluminium Oksida 2:16

    Hidrogen 2:45

    Karbon 4:14

    Kromium 4:36

    Seng 4:58

    Nitrogen 5:12

    Hafnium 5:53

    Iodin 6:56

    Helium 7:32

    Kenapa Kita sulit menemukan Helium di Bumi? 8:16

    Neon 8:40

    Platinum 9:20

    Emas 9:45

    Unsur terlangka di dunia! 10:14

    #kimia #halaneh #sisiterang

    Kredit foto pratinjau:

    Astatine: Oleh Elahe81 - Koleksi Pribadi, CC BY-SA 4.0 creativecommons.org/licenses/by-sa/4.0, commons.wikimedia.org/w/index.php?curid=47724239

    Animasi sibuat oleh Sisi Terang.

    CC BY-SA 3.0 creativecommons.org/licenses/by-sa/3.0:

    Lubang bor (ditutup las), Agustus 2012: Oleh Rakot13, commons.wikimedia.org/w/index.php?curid=21029748

    Lubang Borehole yang sangat dalam: Oleh Andre Belozeroff, commons.wikimedia.org/w/index.php?curid=6822548

    Distrikt Mysore, Karnataka, Indien: Oleh Parent Géry, commons.wikimedia.org/w/index.php?curid=19699881

    Beberapa kristal korondum: Oleh Ra'ike, commons.wikimedia.org/w/index.php?curid=1340975

    Rubi alami dengan inklusi: Oleh Humanfeather, commons.wikimedia.org/w/index.php?curid=6969673

    Kepingan Hafnium: Oleh Deglr6328, commons.wikimedia.org/w/index.php?curid=6875345

    CC BY-SA 4.0 creativecommons.org/licenses/by-sa/4.0:

    Batang bahan bakar magnox: Oleh Geni, commons.wikimedia.org/w/index.php?curid=5542775

    Cairan Iodin di bagian bawah gelas kimia: Oleh VelichkoArkadiy, commons.wikimedia.org/w/index.php?curid=56831960

    Foto udara tambang platinum di Afrika Selatan: Oleh Ryanj93, commons.wikimedia.org/w/index.php?curid=50106591

    Astatin: Oleh Elahe81, commons.wikimedia.org/w/index.php?curid=47724239

    Oleh Wiener Edelstein Zentrum, CC BY-SA 3.0 creativecommons.org/licenses/by-sa/3.0:

    Safir Padparaja, sudah diasah, 2.28cts, commons.wikimedia.org/w/index.php?curid=31984882

    Safir, ptotongan radian, tanpa perlakuan, Sri Lanka 1.15cts, commons.wikimedia.org/w/index.php?curid=31984881

    Safir kuning tanpa perlakuan 0.67cts, commons.wikimedia.org/w/index.php?curid=31984841

    Safir ungu, bentuk buah pir, 3.20cts, commons.wikimedia.org/w/index.php?curid=31984889

    Safir merah mudah oktagonal 1.17cts, commons.wikimedia.org/w/index.php?curid=31984883

    Animasi is dibuat oleh Sisi Terang.

    Berlangganan Sisi Terang youtube.com/channel/UCSg-Y9uI1E-my-I4WKKioEQ

    Musik oleh Epidemic Sound epidemicsound.com/

    Materi stok (foto, rekaman, dan lain-lain):

    depositphotos.com
    shutterstock.com
    eastnews.ru

  • What is RUBIDIUM-STRONTIUM DATING What does RUBIDIUM-STRONTIUM DATING mean

    ( Read More)

    ✪✪✪✪✪ theaudiopedia.com ✪✪✪✪✪

    What is RUBIDIUM-STRONTIUM DATING? What does RUBIDIUM-STRONTIUM DATING mean? RUBIDIUM-STRONTIUM DATING meaning - RUBIDIUM-STRONTIUM DATING definition - RUBIDIUM-STRONTIUM DATING explanation.

    Source: Wikipedia.org article, adapted under creativecommons.org/licenses/by-sa/3.0/ license.

    The rubidium-strontium dating method is a radiometric dating technique used by scientists to determine the age of rocks and minerals from the quantities they contain of specific isotopes of rubidium (87Rb) and strontium (87Sr, 86Sr).

    Development of this process was aided by German chemists Otto Hahn and Fritz Strassmann, who later went on to discover nuclear fission in December 1938.

    The utility of the rubidium-strontium isotope system results from the fact that 87Rb (one of two naturally occurring isotopes of rubidium) decays to 87Sr with a half life of 48.8 billion years. In addition, Rb is a highly incompatible element that, during partial melting of the mantle, prefers to join the magmatic melt rather than remain in mantle minerals. As a result, Rb is enriched in crustal rocks. The radiogenic daughter, 87Sr, is produced in this decay process and was produced in rounds of stellar nucleosynthesis predating the creation of the Solar System.

    Different minerals in a given geologic setting can acquire distinctly different ratios of radiogenic strontium-87 to naturally occurring strontium-86 (87Sr/86Sr) through time; and their age can be calculated by measuring the 87Sr/86Sr in a mass spectrometer, knowing the amount of 87Sr present when the rock or mineral formed, and calculating the amount of 87Rb from a measurement of the Rb present and knowledge of the 85Rb/87Rb weight ratio.

    If these minerals crystallized from the same silicic melt, each mineral had the same initial 87Sr/86Sr as the parent melt. However, because Rb substitutes for K in minerals and these minerals have different K/Ca ratios, the minerals will have had different Rb/Sr ratios.

    During fractional crystallization, Sr tends to become concentrated in plagioclase, leaving Rb in the liquid phase. Hence, the Rb/Sr ratio in residual magma may increase over time, resulting in rocks with increasing Rb/Sr ratios with increasing differentiation. Highest ratios (10 or higher) occur in pegmatites.

    Typically, Rb/Sr increases in the order plagioclase, hornblende, K-feldspar, biotite, muscovite. Therefore, given sufficient time for significant production (ingrowth) of radiogenic 87Sr, measured 87Sr/86Sr values will be different in the minerals, increasing in the same order.

    For example, consider the case of an igneous rock such as a granite that contains several major Sr-bearing minerals including plagioclase feldspar, K-feldspar, hornblende, biotite, and muscovite. Each of these minerals has a different initial rubidium/strontium ratio dependent on their potassium content, the concentration of Rb and K in the melt and the temperature at which the minerals formed. Rubidium substitutes for potassium within the lattice of minerals at a rate proportional to its concentration within the melt.

    The ideal scenario according to Bowen's reaction series would see a granite melt begin crystallizing a cumulate assemblage of plagioclase and hornblende (i.e.; tonalite or diorite), which is low in K (and hence Rb) but high in Sr (as this substitutes for Ca), which proportionally enriches the melt in K and Rb. This then causes orthoclase and biotite, both K rich minerals into which Rb can substitute, to precipitate. The resulting Rb-Sr ratios and Rb and Sr abundances of both the whole rocks and their component minerals will be markedly different. This, thus, allows a different rate of radiogenic Sr to evolve in the separate rocks and their component minerals as time progresses.

  • Unsur Logam Alkali (Golongan IA)

    ( Read More)

    Alkali berasal dari bahasa Arab artinya Abu
    Berisi :
    1. Keberadaan Di Alam
    2. Sifat-Sifat
    3. Reaksi-reaksi
    4. Cara pembuatan
    5. Kegunaan
    6. Soal Latihan

  • Brainiac Alkali Metals

    ( Read More)

    Explosions and science from UK Sky One series Brainiac.

  • Unsur golongan IA. Unsur golongan alkali. Golongan alkali. Logam alkali.Golongan IA.Golongan 1. IA

    ( Read More)

    Konfigurasi golongan alkali.Kelimpahan alam unsur golongan alkali.Sifat-sifat unsur golongan alkali.Pembuatan unsur golongan alkali.Senyawa penting dan kegunaannya.

  • Unsur - Kimia - 7 SMP

    ( Read More)

  • TUGAS OSEANOGRAFI KIMIA ELEMENT RUBIDIUM UNSUR (RB)

    ( Read More)

  • KIM_XII_MIAJI_GENAP_GOLONGAN IA

    ( Read More)

    Anggota Kelompok Golongan IA Genap:
    1. Aisyah Ma'rufah (04)
    2. Annisa Syifa Haura (08)
    3. Ririn Novi Rosyida (24)

  • Logam Alkali - Just Kimia Things

    ( Read More)

    Ini video yang harusnya si dan pengennya diupload tahun lalu, eh gk kesampean wkwkw. yaudah sekarang baru upload oke?

  • PERBEDAAN ASAM KUAT VS ASAM LEMAH, BASA KUAT VS BASA LEMAH

    ( Read More)

    Hallo.... di video ini dijelaskan cara mudah membedakan asam kuat dan asam lemah, serta basa kuat dan basa lemah. Materi ini merupakan dasar materi Asam Basa untuk dapat melanjutkan ke materi Kimia Asam Basa lainnya seperti perhitungan pH asam basa, buffer / larutan penyangga, maupun hidrolisis garam. Silahkan ditonton sampai habis untuk mendapatkan manfaatnya secara keseluruhan.

    Selamat menonton , semoga bermanfaat :)

    Mohon dukungannya untuk membuat channel Esenka Pedia terus berkembang dengan cara klik Subscribe dan Share ke teman2 kalian, semoga mejadi amal jariyah bagi kita semua. Aamiin

    Terimakasih

    #asambasa
    #kimia
    #basakuat

  • ALKALI (1A)

    ( Read More)

    Materi ini bertujuan untuk memahami tentang logam Alkali (1A) baik dari sifat-sifat nya, warna nyala jika di bakar dan kegunaannya dalam kehidupan sehari hari. Dengan penjelasan yang simple dan mudah dimengerti materi alkali jadi lebih faham, apalagi terdapat trik asyik dan latihan soal yang dapat mengukur tingkat pemahaman terhadap materi tersebut.

    Untuk mempermudah dalam memahami materi ini disarankan agar memahami materi sebelumnya yang dapat di lihat di link berikut ini.

    SIFAT PERIODIK UNSUR
    youtu.be/Ycsfg7Ftjes

    GAS MULIA
    youtu.be/SgCUHE9Gx6Q

    HALOGEN
    youtu.be/o8jD2OK0xAg

    REAKSI - REAKSI HALOGEN
    youtu.be/3UAZR_0f1zs

    Jika video ini bermanfaat bagi kalian semua silahkan di share ke teman kamu yang lain supaya manfaatnya lebih banyak lagi.like, subscribe dan komentarnya di tunggu ya untuk memotivasi saya untuk membuat video pembelajaran kimia selanjutnya lebih menarik dan bagus.

    Untuk mendapatkan rangkuman materi dari video ini bisa dilihat di IG sholih.u.. Jangan lupa follow dan kunjungi Fb Asyiknya Belajar Kimia.

    Terima kasih atas support dan dukungan nya pada chanel youtube pembelajaran kimia KIM UD, moga bermanfaat bagi banyak orang. Atas support dan dukungan di ucapkan banyak terima kasih jazakumullah khoiron katsiro.

    Salam Sukses Selalu

    KIM UD,
    Asyiknya Belajar Kimia

  • UNSUR UNSUR GOLONGAN I A - KIMIA KELAS 10 SEM 1

    ( Read More)

    Logam alkali adalah golongan (kolom) dalam tabel periodik yang berisi unsur-unsur litium (Li), natrium (Na), kalium (K),[note 1] rubidium (Rb), sesium (Cs),[note 2] dan fransium (Fr). Golongan ini terletak pada blok-s tabel periodik karena seluruh logam alkali memiliki elektron terluarnya pada posisi orbital-s: konfigurasi unsur/elektron ini tercermin pada sifat karakteristik mereka.

    Penjelasan lebih lengkap bisa simak video di atas.
    Kami dari Kelompok 1 (X MIPA 1) yang beranggotakan
    - Jihan Aulia Fatiha
    - M. Dzaki Nugroho
    - Alzena Sahashika
    - Aryafatih Amijaya

    Terimakasih!❤️

  • ALKALI (IA) KIMIA UNSUR -KIMIA SMA

    ( Read More)

    Materi ini bertujuan untuk memahami tentang kimia unsur yaitu ALKALI (I A) yang meliputi
    .pengertian,sifat-sifat, senyawa ALKALI dan kegunaan dalam kehidupan sehari-hari. Dengan penjelasan yang simpel dan mudah dipahami.

    jika vidio ini bermanfaat bagi kalian silakan share ketemen kamu yang lain supaya manfaatnya lebih banyak lagi. like, subcsribe dan komentarnya diharapkan dapat memotivasi untuk membuat vidio kimia selanjutnya.

    terimakasih atas support dan dukungannya pada channel youtube suka kimia, semoga bermanfaat bagi banyak orang.atas support dan dukungannya diucapkan banyak terimakasih.

    salam sukses selalu

  • Menghitung RA dan RB dan menghitung momen (mekanika teknik)

    ( Read More)

    Video ini berisi penjelasan tentang cara menghitung reaksi tumpuan (RA dan RB) serta cara menghitung momen pada suatu titik.

  • Golongan IA

    ( Read More)

    Berisi penjelasan tentang golongan alkali (IA)

  • Kimia kelas X - Ikatan Kimia part 1 - Ikatan Ion

    ( Read More)

    Di dalam video ini, ko Ben akan membahas materi dan menjelaskan tentang soal soal yang biasanya diberikan dalam Kimia bab Ikatan Kimia dengan detail. Jadi jangan lupa tonton sampai habis, Like, Subscribe dan share ke semua teman kalian.

    Music:
    Stars and Constellations - Sarah, The Illstrumentalist

  • Unsur golongan 1A (logam alkali)

    ( Read More)

    Unsur unsur golongan 1A. Pengertian, sifat fisik, kimia, reaksi kimia, kelimpahan di alam dan pemanfaatan nya